SI100B Introduction to Information Science and Technology (Part 3: Electrical Engineering)

Lecture #5 (Digital) Sequential Logic Circuits #2

Instructor: Haoyu Wang(王浩宇) Apr 18th, 2023

The Theme Story

(Figures from Internet)

Study Purpose of Lecture #5

- 哲学三问
 - Who are you?
 - Where are you from?
 - Where are you going?

To answer those questions throughout your life

(Figures from Internet)

- In this lecture, we ask
 - What is synchronous sequential circuit?
 - How do we realize memory array?
 - How to use finite state machine to build useful applications?

Lecture Outline

- Synchronous sequential circuit
 - The evolution of flip-flops
 - Synchronous and asynchronous circuits
 - Example: 4 x 3 memory
- Memory Array
- Finite state machines (FSM)
 - Traffic light example

Synchronous and asynchronous circuits

Synchronous circuit

 Asynchronous circuit or self-timed circuit

Synchronous and asynchronous circuits

Synchronous circuit

 Asynchronous circuit or self-timed circuit

- Common clock signal
- Output only change at the edge of clock pulse
- clock signal should be long enough so that the critical path can settle before next clock edge
- Easy design

- Not governed by global clock
- Resulting state can be sensitive to the relative arrival times of inputs at gates, the race condition

Delay in combinational circuit

- contamination delay t_{cd}
 - Y (output) starts to change after the change of A (input)
- propagation delay t_{pd}
 Y (output) definitely
 - settles in new value

Racing condition

• In combinational circuit

Racing condition

• In combinational circuit

 In asynchronous sequential circuit

- D = 1 CLK = 1; \overline{CLK} = 0 Q_{prev} = 1*1 + 0*X = 1
- CLK = 1 → 0 ; CLK = 1 Q = 1*0 + 1*1 = 1
- Suppose the delay through the inverter from CLK to CLK' is rather long compared to the delays of the AND and OR gates
- eventually Q=0 because of the race condition

 $Q = CLK \cdot D + \overline{CLK} \cdot Q_{prev}$

Rules of synchronous sequential circuit

- Every circuit element is either a register or a combinational circuit
- At least one circuit element is a register
- All registers receive the same clock signal
- Every cyclic path contains at least one register

Example: 2 x 2 memory

- 2 words and each can store 2 bits of information
- To represent 2 words need 1-bits for address
 Address decoder performs the address decoding
- To store information we use D Flip-Flop for each bit (total 4, as each location as 2 bits and we have 2 total locations)
- Need select variable to chose if we want to read or write data and that is combined with clock signal (using some combinational logic)
- Also need some other combinational logic...

Example: 2 x 2 memory

Example: 4 x 3 memory

- 4 words and each can store 3 bits of information
- To represent 4 words need 2-bits for address
 Address decoder performs the address decoding
- To store information we use D Flip-Flop for each bit (total 12, as each location as 3 bits and we have 4 total locations)
- Need select variable to chose if we want to read or write data and that is combined with clock signal (using some combinational logic)
- Also need some other combinational logic...

Example: 4 x 3 memory

Write operation to word 1

Read operation from word 3

Memory array

- etc.

Example: 4×3 Memory Array

Volatile memory

• Static Random Access Memory (SRAM)

Dynamic Random Access Memory (DRAM)

Nonvolatile memory

• Read only memory (ROM)

- Modern ROMs can be programmed (written) as well. For example flash memory
- Generally, ROMs take a longer time to write than RAMs, but are nonvolatile.

Memory comparison

 The best memory type for a particular design depends on the speed, cost, and power constraints.

Memory Type	Transistors per Bit Cell	Latency
flip-flop	~20	fast
SRAM <mark>register cache</mark>	' 6	medium
DRAM main memory	1	slow

Finite-state machine

 FSM - a mathematical model of computation used to design both <u>computer programs</u> and <u>sequential</u> <u>logic circuits</u>

The most seen FSM

Mealy machine

Example: traffic light controller

- Traffic sensors T_A and T_B ("1" busy, "0" empty)
- Traffic lights L_A and L_B (each light have red, yellow, and green)
- 5-second clock, at each rising edge, lights may change based on the sensors
- Reset button

Black box view

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #5

State transition diagram

SI100B Introduction to Information Science and Technology - Electrical Engineering - Lecture #5

State table

State transition table

Current State S	Inputs $T_A T_B$		Next State S'
SO	0	х	S1
S 0	1	х	S 0
S1	х	х	S2
S2	Х	0	\$3
S2	Х	1	S2
\$3	Х	Х	S0

Binary encoded state transition table

Current State		Inputs		Next State	
S ₁	<i>S</i> ₀	T_A	T _B	<i>S</i> ₁ '	<i>S</i> [′] ₀
0	0	0	х	0	1
0	0	1	х	0	0
0	1	х	х	1	0
1	0	Х	0	1	1
1	0	Х	1	1	0
1	1	Х	Х	0	0

Output table

Output table

Curren	t State		Out	outs		
<i>S</i> ₁	S 0	L _{A1}	L _{A0}	L_{B1}	L_{B0}	
0	0	0	0	1	0	
0	1	0	1	1	0	
1	0	1	0	0	0	
1	1	1	0	0	1	

Sum-of-product form

State table

Curren S ₁	it State S ₀	Inputs T _A T _B		Next S'_1	State S'0
0	0	0	Х	0	1
0	0	1	Х	0	0
0	1	Х	Х	1	0
1	0	Х	0	1	1
1	0	Х	1	1	0
1	1	Х	Х	0	0

Output

tab	e State	Outputs			
<i>S</i> ₁	<i>S</i> ₀	L _{A1}	L _{A0}	L_{B1}	L _{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

State & output logic

- State logic (sequential)
- Output Logic (combinational)

FSM with more states

Finite State Machine: Soda Machine State Diagram 25 Quarter Nickel 5 0¢ 5¢ 10¢ 15¢ 20¢ 25¢ 30¢ 35¢ 40¢ 45¢ 50¢ 55¢ Dime Dispense **Reset State**

FSM with more states

• Microwave oven

